To see a complete pubmed search of Dickson lab publications click here

2016 – Present

  1. Phosphoinositide transport and metabolism at membrane contact sites. Dickson EJ, 2022. BBA Mol Cell Bio LipidsPMID: 34995791DOI: 10.1016/j.bbalip.2021.159107
  2. IP3 R-driven increases in mitochondrial Ca2+ promote neuronal death in NPC disease. Tisicone et al., 2021. PNASPMID: 34580197. DOI: 10.1073/pnas.2110629118
  3. NPC1 regulates the distribution of phosphatidylinositol 4-kinases at Golgi and lysosomal membranes. EMBO. Kutchukian, Vivas et al., 2021. PMID: 34019311DOI: 10.15252/embj.2020105990Appendix Figure S8
  4. β-Adrenergic control of sarcolemmal Ca V 1.2 abundance by small GTPase Rab proteins. PNAS. Del Villar et al., 2021. P PMCID: PMC7896340

5. AKAP5 complex facilitates purinergic modulation of vascular L-type Ca 2+ channel Ca V 1.2. Nature Communications. Prada et al., 2020. PMCID: PMC7575592

6. Sensing of nutrients by CPT1C controls SAC1 activity to regulate AMPA receptor trafficking. The Journal of Cell Biology. Casas et al., 2020. PMCID: PMC7659714

7. An anthrone-based Kv7.2/7.3 channel blocker with improved properties for the investigation of psychiatric and neurodegenerative disorders. PMID: PMCID: PMC6858848

8. Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. The Journal of Cell BiologyTiscione et al., 2019. PMCID: PMC6891088

graphical abstract NPC1 SOCE neuron




9. Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis. Journal of Biological Chemistry. Kirmiz et al., 2019. PMCID: PMC6879337

10. Niemann-Pick Type C Disease Reveals a Link between Lysosomal Cholesterol and PtdIns(4,5)P2 That Regulates Neuronal Excitability. Cell Reports. Vivas et al., 2019.  PMCID: PMC6891088



11. Recent advances in understanding phosphoinositide signaling in the nervous system. F1000. Eamonn Dickson. PMCID: PMC6415330


12. β-adrenergic-mediated dynamic augmentation of sarcolemmal Ca V 1.2 clustering and co-operativity in ventricular myocytes. The Journal of Physiology. Ito et al., 2019. PMCID: PMC6462464

13. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochemistry. Dickson and Hille. PMCID: PMC6342281


14. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. ELife. Besprozvannaya et al., 2018. PMCID: PMC5823543

15. Ground State Depletion Super-resolution Imaging in Mammalian Cells. JOVE. Dixon et al., 2017. PMCID: PMC5755322


16. RASSF4: Regulator of plasma membrane PI(4,5)P2. Eamonn Dickson. The Journal of Cell Biology. 2017. PMCID: PMC5496636

17. Dickson EJ (Corresponding author), Jensen JB, Vivas O, Kruse M, Traynor-Kaplan A, Hille B. Rapid formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositide metabolism. J Cell Biol. 2016; 11;213(1):33-48

Publications 2010 – 2016 (Eamonn’s Post-Doc with Bertil Hille at The University of Washington)

18. Fatty-acyl chain profiles of cellular phosphoinositides. BBA Mol Cell Bio Lipids. Traynor-Kaplan et al., 2017. PMCID: PMC5392126

19. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability. Book Chapter: Adv Exp Med Biol. Eamonn Dickson, 2017. PMID: 28815524

20. Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions. Biochem Soc Trans. Dickson et al., 2016. MCID: PMC4861950

21. Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. The Journal of Cell Biology. 2016. Dickson et al., (corresponding author). PMCID: PMC4828688

22.  Melatonin and N-acetyl melatonin are membrane-permeant hormones. Yu H, Dickson EJ, Koh DS, Hille B. J. Gen. Physiol., 2016;147(1):63-7

23. Phosphoinositides regulate ion channels. Hille B, Dickson EJ, Kruse M, Suh BC, Vivas O. Biochimica et Biophysica Acta., 2015 Jun;1851: 844-856

24. Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current. Dickson EJ, Jensen JB, Hille B.  PNAS., 2014; E2281–E2290.

25.  Quantitative properties and receptor reserve of the IP3 and calcium branch of Gq-coupled receptor signaling. Dickson EJ, Falkenburger BH, Hille B.  J. Gen. Physiol., 2013; May;141(5):521-35

26. F.  Quantitative properties and receptor reserve of the DAG and PKC branch of Gq-coupled receptor signaling. alkenbuger BH,* Dickson EJ,* Hille B J. Gen. Physiol., 2013; May;141(5):537-55

27. Orai-STIM mediated Ca2+ release from secretory granules revealed by a novel Ca2+ and pH probe. Dickson EJ, Duman JG, Moody, MW, Chen L, Hille B.   PNAS., 2012; Dec 18;109(51):E3539-48

28.  Optogenetic control of phosphoinositide metabolism. Idevall-Hagren O, Dickson EJ, Hille B, Toomre DK, De Camilli P. PNAS., 2012; Aug 28;109(35): E2316-23.

29.  Phosphoinositides: lipid regulators of membrane proteins. Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B.  J. Physiol., 2010; Sep 1; 588(Pt 17): 3179-3185.

Publications 2005- 2010 (Eamonn’s graduate work with Terry Smith at The University of Nevada, Reno)

30.  Colonic elongation inhibits pellet propulsion and migrating motor complexes in the murine large bowel. Heredia DJ*, Dickson EJ*, Bayguinov PO, Hennig GW, Smith TK. J. Physiol., 2010; Aug 1; 588(Pt 15): 2919-2934

31. Critical role of 5-HT1A, 5-HT3, and 5-HT7 receptor subtypes in the initiation, generation, and propagation of the murine colonic migrating motor complex. Dickson EJ, Heredia DJ, Smith TK.  Am. J. Physiol., 2010; Jul; 299(1): G144-157.

32.  Controversies involving the role of 5-hydroxytryptamine (5-HT) in generating colonic migrating motor complexes: what is spontaneous? Smith TK, Dickson EJ, Heredia DJ, Hennig GW, Bayguinov PO. Gastroenterology, 2010; Mar; 138(3): 1213-1214.

33.  The mechanisms underlying the generation of the colonic migrating motor complex in both wild-type and nNOS knockout mice. Dickson EJ, Heredia DJ, McCann CJ, Hennig GW, Smith TK. Am. J. Physiol., 2010; Feb; 298(2): 222-233.

34.  Localized release of 5-HT by a fecal pellet regulates migrating motor complexes in murine colon. Heredia DJ,* Dickson EJ,* Bayguinov PO, Hennig GW, Smith TK. Gastroenterology, 2009; Apr;136(4): 1328-1338.

35.  Polarized intrinsic neural reflexes in response to colonic elongation. Dickson EJ, Hennig GW, Heredia DJ, Lee HT, Bayguinov PO, Spencer NJ, Smith TK.  J. Physiol., 2008; Sep 1; 586(Pt 17): 4225-4240. 

36. Recent advances in enteric neurobiology: mechanosensitive interneurons.  Smith TK, Spencer NJ, Hennig GW, Dickson EJ.  Neurogastroenterol. Motil., 2007; 19: 869–878

37.  Colonic elongation activates an intrinsic reflex that underlies slow transit and accommodation. Smith TK, Dickson EJ, Hennig GW, Bayguinov PO, Spencer NJ. Physiological News, 2007; Number 69.

38. An intrinsic occult reflex underlies accommodation and slow transit in the distal large bowel. Dickson EJ, Spencer NJ, Bayguinov PO, Heredia DJ, Hennig GW, Smith TK.  Gastroenterology, 2007; 132(5): 1912-24.

39. Sensory elements within the circular muscle are essential for mechanotransduction of ongoing peristaltic reflex activity in guinea-pig distal colon.  Spencer NJ*, Dickson EJ*, Hennig GW, Smith TK.  J. Physiol., 2006; 15; 576(Pt 2): 519-531.

40.   Synchronization of enteric neuronal firing during the murine colonic MMC. Spencer N, Hennig GW, Dickson EJ, Smith TK. J. Physiol., 2005; 564: 829-847.